Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.000
Filtrar
1.
Sci Rep ; 14(1): 10973, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744889

RESUMO

In this study, we synthesized new series of 5-oxo-2-phenyl-4-(arylsulfamoyl)sulphenyl) hydrazono)-4,5-dihydro-1H-pyrrole-3-carboxylate hybrids 4a-f with the goal of overcoming sulfonamide resistance and identifying novel therapeutic candidates by chemical changes. The chemical structures of the synthesized hybrids were established over the spectroscopic tools. The frontier molecular orbitals configuration and energetic possessions of the synthesized compounds were discovered utilizing DFT/B3LYP/6-311++ G** procedure. The 3D plots of both HOMO and LUMO showed comparable configuration of both HOMO and LUMO led to close values of their energies. Amongst the prepared analogues, the sulfonamide hybrids 4a-f, hybrid 4a presented potent inhibitory towards S. typhimurium with (IZD = 15 mm, MIC = 19.24 µg/mL) and significant inhibition with (IZD = 19 mm, MIC = 11.31 µg/mL) against E.coli in contrast to sulfonamide (Sulfamethoxazole) reference Whereas, hybrid 4d demonstrated potent inhibition with (IZD = 16 mm, MIC = 19.24 µg/mL) against S. typhimurium with enhanced inhibition against E. Coli, Additionally, the generated sulfonamide analogues'' molecular docking was estimated over (PDB: 3TZF and 6CLV) proteins. Analogue 4e had the highest documented binding score as soon as linked to the other analogues. The docking consequences were fitting and addressed with the antibacterial valuation.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pirróis , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Salmonella typhimurium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Modelos Moleculares , Relação Estrutura-Atividade , Estrutura Molecular
2.
Vet Med Sci ; 10(3): e1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739101

RESUMO

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Assuntos
Galinhas , Ovos , Salmonella enteritidis , Salmonella typhimurium , Animais , Irã (Geográfico)/epidemiologia , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/isolamento & purificação , Ovos/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/isolamento & purificação , Estudos Transversais , Prevalência , Antibacterianos/farmacologia , Codorniz/microbiologia , Farmacorresistência Bacteriana , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Salmonelose Animal/microbiologia , Salmonelose Animal/epidemiologia
3.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
4.
Vet Med Sci ; 10(3): e1445, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38652025

RESUMO

BACKGROUND: This study aimed to evaluate the antimicrobial effects of zahter extract, zahter essential oil, laurel extract, and laurel essential oil on Salmonella Typhimurium inoculated on chicken wings. METHODS: A total of 10 groups, including eight study groups and two control groups were formed, consisting of zahter extract and zahter essential oil and laurel extract and laurel essential oil in different proportions. In the study, laurel extract at 6.4% and 12.8% concentrations, laurel essential oil at 0.2% and 0.4% concentrations, zahter extract at 0.2% and 0.4% concentrations, and zahter essential oil at 0.2% and 0.4% concentrations were used. RESULTS: The broth microdilution method was used to evaluate the antimicrobial activity of the extract and essential oils on the S. Typhimurium. Minimum inhibitory concentrations of the extracts and essential oils used in the study against S. Typhimurium were determined. The highest inhibitory effect on S. Typhimurium was observed in the 0.4% laurel essential oil group. It was determined that the inhibitory effect increased as the concentration of laurel essential oil increased. In addition, the antimicrobial activity of zahter essential oil is less inhibitory than the laurel extract, laurel essential oil, and zahter extract. CONCLUSION: According to the results of this study, it has been revealed that extracts and essential oils obtained from zahter and laurel plants, which have been shown to be natural antimicrobial, can be used in foods as an alternative to chemical additives. To develop research results, the applicability of these extracts and essential oils in different foodstuffs should be examined using different ingredients and concentrations.


Assuntos
Galinhas , Óleos Voláteis , Extratos Vegetais , Salmonella typhimurium , Asas de Animais , Animais , Salmonella typhimurium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asas de Animais/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Laurus/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Anti-Infecciosos/farmacologia
5.
Redox Biol ; 72: 103151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593631

RESUMO

Salmonella infection entails a cascade of attacks and defence measures. After breaching the intestinal epithelial barrier, Salmonella is phagocytosed by macrophages, where the bacteria encounter multiple stresses, to which it employs relevant countermeasures. Our study shows that, in Salmonella, the polyamine spermidine activates a stress response mechanism by regulating critical antioxidant genes. Salmonella Typhimurium mutants for spermidine transport and synthesis cannot mount an antioxidative response, resulting in high intracellular ROS levels. These mutants are also compromised in their ability to be phagocytosed by macrophages. Furthermore, it regulates a novel enzyme in Salmonella, Glutathionyl-spermidine synthetase (GspSA), which prevents the oxidation of proteins in E. coli. Moreover, the spermidine mutants and the GspSA mutant show significantly reduced survival in the presence of hydrogen peroxide in vitro and reduced organ burden in the mouse model of Salmonella infection. Conversely, in macrophages isolated from gp91phox-/- mice, we observed a rescue in the attenuated fold proliferation previously observed upon infection. We found that Salmonella upregulates polyamine biosynthesis in the host through its effectors from SPI-1 and SPI-2, which addresses the attenuated proliferation observed in spermidine transport mutants. Thus, inhibition of this pathway in the host abrogates the proliferation of Salmonella Typhimurium in macrophages. From a therapeutic perspective, inhibiting host polyamine biosynthesis using an FDA-approved chemopreventive drug, D, L-α-difluoromethylornithine (DFMO), reduces Salmonella colonisation and tissue damage in the mouse model of infection while enhancing the survival of infected mice. Therefore, our work provides a mechanistic insight into the critical role of spermidine in stress resistance of Salmonella. It also reveals a bacterial strategy in modulating host metabolism to promote their intracellular survival and shows the potential of DFMO to curb Salmonella infection.


Assuntos
Proteínas de Bactérias , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Salmonella typhimurium , Espermidina , Animais , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Espermidina/metabolismo , Camundongos , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Poliaminas/metabolismo , Fagocitose/efeitos dos fármacos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Interações Hospedeiro-Patógeno , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Estresse Oxidativo/efeitos dos fármacos
6.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546218

RESUMO

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Assuntos
Farmacorresistência Bacteriana Múltipla , Filogenia , Salmonella enterica , Salmonella typhimurium , Sorogrupo , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Brasil , Farmacorresistência Bacteriana Múltipla/genética , México , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/classificação , Integrons/genética , Genoma Bacteriano , Chile , Genômica , Antibacterianos/farmacologia , América Latina , Microbiologia da Água , Polimorfismo de Nucleotídeo Único , Plasmídeos/genética , Testes de Sensibilidade Microbiana
7.
Environ Mol Mutagen ; 64(6): 335-341, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37402651

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), an oxidation product of the tire additive, 6PPD, has been associated with high mortality of salmonids (0.1 µg/L). The objective of this study was to determine the acute toxicity using neonates and mutagenicity (micronuclei in hemolymph of exposed adults) of 6PPD-quinone in the marine amphipod Parhyale hawaiensis. Also, we studied its mutagenicity in the Salmonella/microsome assay using five strains of Salmonella with and without metabolic system (rat liver S9, 5%). 6PPD-quinone did not present acute toxicity to P. hawaiensis from 31.25 to 500 µg/L. Micronuclei frequency increased after 96 h-exposure to 6PPD-quinone (250 and 500 µg/L) when compared to the negative control. 6PPD-quinone also showed a weak mutagenic effect for TA100 only in the presence of S9. We conclude that 6PPD-quinone is mutagenic to P. hawaiensis and weakly mutagenic to bacteria. Our work provides information for future risk assessment of the presence of 6PPD-quinone in the aquatic environment.


Assuntos
Anfípodes , Benzoquinonas , Mutagênicos , Fenilenodiaminas , Salmonella typhimurium , Animais , Testes de Mutagenicidade , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Fenilenodiaminas/toxicidade , Benzoquinonas/toxicidade , Anfípodes/efeitos dos fármacos , Anfípodes/genética
8.
J Diet Suppl ; 20(5): 788-810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36099186

RESUMO

Probiotics produce small molecules that may serve as alternatives to conventional antibiotics by suppressing growth of antimicrobial resistant (AMR) pathogens. The objective of this study was to identify and examine antimicrobials produced and secreted by probiotics using 'omics' profiling with computer-based metabolic flux analyses. The cell-free supernatant of Gram-positive Lacticaseibacillus rhamnosus GG (LGG) and Gram-negative Escherichia coli Nissle (ECN) probiotics inhibited growth of AMR Salmonella Typhimurium, Escherichia coli, and Klebsiella oxytoca ranging between 28.85 - 41.20% (LGG) and 11.48 - 29.45% (ECN). A dose dependent analysis of probiotic supernatants showed LGG was 6.27% to 20.55% more effective at reducing AMR pathogen growth when compared to ECN. Principal component analysis showed clear separation of ECN and LGG cell free supernatant metabolomes. Among 667 metabolites in the supernatant, 304 were differentially abundant between LGG and ECN probiotics. Proteomics identified 87 proteins, whereby 67 (ECN) and 14 (LGG) showed differential expression as enzymes related to carbohydrate and energy metabolic pathways. The whole genomes and metabolomes were next used for in-silico metabolic network analysis. The model predicted the production of 166 metabolites by LGG and ECN probiotics across amino acid, carbohydrate/energy, and nucleotide metabolism with antimicrobial functions. The predictive accuracy of the metabolic flux analysis highlights the novel utility for profiling probiotic supplements as dietary-based antimicrobial alternatives in the control of AMR pathogen growth.


Assuntos
Escherichia coli , Lacticaseibacillus rhamnosus , Metaboloma , Probióticos , Escherichia coli/efeitos dos fármacos , Probióticos/farmacologia , Proteoma/metabolismo , Proteoma/farmacologia , Resistência Microbiana a Medicamentos/genética , Klebsiella oxytoca/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos
9.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e198402, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1417480

RESUMO

The use of antimicrobials as growth promoters and disease prevention is being constantly reduced in several animal production systems, including in the swine industry. Therefore, this study aimed to evaluate the effectiveness of using acidifiers to control Salmonella Typhimurium in 65-day-old pigs by detecting the pathogen in organs at euthanasia. For this, 24 piglets were divided into two experimental groups consisting of 12 piglets each. An untreated control group (G1) and a treatment group (G2) received a liquid organic acidifier in the drinking water for 10 days (D-5 to D5). Five days after the start of treatment (D0), all piglets were challenged with 106 CFU of Salmonella Typhimurium and assessed for 12 days (D12). Every three days (D3, D6, D9, and D12), three animals from each experimental group were euthanized and then submitted for necropsy. Samples from the intestines (ileum, cecum, mesenteric lymph nodes, and ileocolic lymph nodes), liver, spleen, and lungs were collected to isolate Salmonella. The results show that, numerically, Salmonella isolation in the organs of G2 was lower than in G1 and that the number of positive cecum samples in G1 (66.7%; 8/12) was statistically different from the number of positive models in G2 (16.7%; 2/12), with a reduction of 28.6% of the total cecum positive samples in the treated group compared to the control. Therefore, it was observed that the liquid organic acidifier product could reduce the colonization of organs by Salmonella Typhimurium. (AU)


Assuntos
Animais , Infecções por Salmonella/prevenção & controle , Suínos/fisiologia , Ácidos Orgânicos/análise , Salmonella typhimurium/efeitos dos fármacos
10.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e198402, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1419067

RESUMO

The use of antimicrobials as growth promoters and disease prevention is being constantly reduced in several animal production systems, including in the swine industry. Therefore, this study aimed to evaluate the effectiveness of using acidifiers to control Salmonella Typhimurium in 65-day-old pigs by detecting the pathogen in organs at euthanasia. For this, 24 piglets were divided into two experimental groups consisting of 12 piglets each. An untreated control group (G1) and a treatment group (G2) received a liquid organic acidifier in the drinking water for 10 days (D-5 to D5). Five days after the start of treatment (D0), all piglets were challenged with 106 CFU of Salmonella Typhimurium and assessed for 12 days (D12). Every three days (D3, D6, D9, and D12), three animals from each experimental group were euthanized and then submitted for necropsy. Samples from the intestines (ileum, cecum, mesenteric lymph nodes, and ileocolic lymph nodes), liver, spleen, and lungs were collected to isolate Salmonella. The results show that, numerically, Salmonellaisolation in the organs of G2 was lower than in G1 and that the number of positive cecum samples in G1 (66.7%; 8/12) was statistically different from the number of positive models in G2 (16.7%; 2/12), with a reduction of 28.6% of the total cecum positive samples in the treated group compared to the control. Therefore, it was observed that the liquid organic acidifier product could reduce the colonization of organs by Salmonella Typhimurium.(AU)


O uso de antimicrobianos como promotores de crescimento e prevenção de doenças vem sendo constantemente reduzido em diversos sistemas de produção animal, inclusive na suinocultura. Portanto, o objetivo do presente estudo foi avaliar a eficácia do uso de acidificantes no controle de Salmonella Typhimurium em suínos de 65 dias de idade, detectando o patógeno em órgãos após a eutanásia. Para isso, 24 leitões foram divididos em dois grupos experimentais constituídos por 12 leitões cada. Um grupo controle não tratado (G1) e um grupo de tratamento (G2) que recebeu um acidificante orgânico líquido na água de beber por 10 dias (D-5 a D5). Cinco dias após o início do tratamento (D0), todos os animais foram inoculados oralmente com 106 UFC de Salmonella Typhimurium e avaliados por 12 dias (D12). A cada três dias (D3, D6, D9 e D12), três leitões de cada grupo experimental foram eutanasiados e posteriormente submetidos à necropsia. Amostras de intestino (íleo, ceco, linfonodos mesentéricos e linfonodos ileocólicos), fígado, baço e pulmões foram coletadas para o isolamento de Salmonella. Os resultados mostram que, numericamente, o isolamento de Salmonella nos órgãos do G2 foi inferior ao G1, e que o número de amostras positivas de ceco no G1 (66,7%; 8/12) foi estatisticamente diferente do número de amostras positivas no G2 (16,7%; 2/12), com redução de 28,6% do total de amostras positivas de ceco no grupo tratado em relação ao controle. Portanto, observou-se que o ácido orgânico líquido foi capaz de reduzir a colonização de órgãos por Salmonella Typhimurium.(AU)


Assuntos
Animais , Salmonella typhimurium/efeitos dos fármacos , Suínos/fisiologia , Ácidos Orgânicos/efeitos adversos , Salmonelose Animal/tratamento farmacológico , Eliminação de Partículas Virais
11.
Microbiol Spectr ; 10(6): e0185922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453909

RESUMO

Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.


Assuntos
Antibacterianos , Bacteriocinas , Salmonella enterica , Salmonella typhimurium , Antibacterianos/farmacologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella typhimurium/efeitos dos fármacos , Sorogrupo , Bacteriocinas/farmacologia
12.
J Antimicrob Chemother ; 77(12): 3376-3389, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177811

RESUMO

OBJECTIVES: Salmonella enterica serovar Typhimurium is one of the significant non-typhoidal Salmonella serovars that causes gastroenteritis. The rapid development of antimicrobial resistance necessitates studying new antimicrobials and their therapeutic targets in this pathogen. Our study aimed to investigate the role of four prominent outer membrane porins of S. Typhimurium, namely OmpA, OmpC, OmpD and OmpF, in developing resistance against ceftazidime and meropenem. METHODS: The antibiotic-mediated inhibition of bacterial growth was determined by measuring the absorbance and the resazurin assay. DiBAC4 (Bis-(1,3-Dibutylbarbituric Acid)Trimethine Oxonol), 2,7-dichlorodihydrofluoroscein diacetate (DCFDA) and propidium iodide were used to determine the outer membrane depolarization, reactive oxygen species (ROS) generation and subsequent killing of Salmonella. The expression of oxidative stress-response and efflux pump genes was quantified by quantitative RT-qPCR. HPLC was done to determine the amount of antibiotics that entered the bacteria. The damage to the bacterial outer membrane was studied by confocal and atomic force microscopy. The in vivo efficacy of ceftazidime and meropenem were tested in the C57BL/6 mouse model. RESULTS: Deleting ompA reduced the survival of Salmonella in the presence of ceftazidime and meropenem. Massive outer membrane depolarization and reduced expression of oxidative stress-response genes in S. Typhimurium ΔompA hampered its growth in the presence of antibiotics. The enhanced uptake of antibiotics and decreased expression of efflux pump genes in S. Typhimurium ΔompA resulted in damage to the bacterial outer membrane. The clearance of the S. Typhimurium ΔompA from C57BL/6 mice with ceftazidime treatment proved the role of OmpA in rendering protection against ß-lactam antibiotics. CONCLUSIONS: OmpA protects S. Typhimurium from two broad-spectrum ß-lactam antibiotics, ceftazidime and meropenem, by maintaining the stability of the outer membrane.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Salmonella typhimurium , Animais , Camundongos , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Ceftazidima/farmacologia , Meropeném/farmacologia , Camundongos Endogâmicos C57BL , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
13.
J Glob Antimicrob Resist ; 30: 75-80, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640867

RESUMO

OBJECTIVES: To characterize three Salmonella enterica serovar Typhimurium strains using whole genome sequencing (WGS) and conventional methods. The isolates were recovered from three pediatric patients in Greece as part of the hospital's epidemiological surveillance system during 2016 to 2018. METHODS: Bacterial identification and antimicrobial susceptibility testing was performed using the VITEK 2 automated system, disc diffusion test, and MIC gradient test while serotyping by the slide agglutination method. Detection of resistance genes, eBurst groups (eBG), assignment to sequence types, single nucleotide polymorphism (SNP) typing, location and characterization of drug resistance regions, and in silico plasmid detection were carried out using WGS. RESULTS: All strains were identified as S. Typhimurium-monophasic, ST34, eBG1 with antigenic formula 1,4, [5], 12:i:-. They were phenotypically resistant to most antibiotics tested except piperacillin/tazobactam, imipenem, and co-trimoxazole. WGS revealed the chromosomally located genes encoding the ASSuT (ampicillin, streptomycin, sulfonamides, and tetracycline) resistant pattern in all three strains. WGS revealed extended spectrum ß-lactamase (ESBL) production in all three strains, the presence of blaCTX-M-3 on an IncI1 plasmid in two strains isolated in 2018, and the chromosomally encoded blaCTX-M-55 plus qnrS1 (resistance to ciprofloxacin) in the strain isolated in 2016. The two strains from 2018 were isolated from the same hospital ward and were genetically related. CONCLUSIONS: The emergence of ESBL among S. 1,4,[5], 12:i:- is worrisome due to its increasing antimicrobial resistance phenotype, making clinical treatment difficult. WGS provides an alternative to traditional methods of identification and genomic characterisation of strains, and serves to better understand their epidemiological dynamics and bacterial pathogenesis.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Infecções por Salmonella , Salmonella typhimurium , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Grécia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Sorogrupo , beta-Lactamases/genética
14.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163280

RESUMO

The rapid identification of bacterial antibiotic susceptibility is pivotal to the rational administration of antibacterial drugs. In this study, cefotaxime (CTX)-derived resistance in Salmonella typhimurium (abbr. CTXr-S. typhimurium) during 3 months of exposure was rapidly recorded using a portable Raman spectrometer. The molecular changes that occurred in the drug-resistant strains were sensitively monitored in whole cells by label-free surface-enhanced Raman scattering (SERS). Various degrees of resistant strains could be accurately discriminated by applying multivariate statistical analyses to bacterial SERS profiles. Minimum inhibitory concentration (MIC) values showed a positive linear correlation with the relative Raman intensities of I990/I1348, and the R2 reached 0.9962. The SERS results were consistent with the data obtained by MIC assays, mutant prevention concentration (MPC) determinations, and Kirby-Bauer antibiotic susceptibility tests (K-B tests). This preliminary proof-of-concept study indicates the high potential of the SERS method to supplement the time-consuming conventional method and help alleviate the challenges of antibiotic resistance in clinical therapy.


Assuntos
Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Análise Espectral Raman/métodos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Infecções por Salmonella/diagnóstico , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/patogenicidade
15.
Biol Trace Elem Res ; 200(11): 4817-4827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35028867

RESUMO

The study aimed to determine the effects of orally supplemental zinc on body weight, Salmonella invasion, serum IgA, intestinal histomorphology, and immune response of Salmonella enterica serovar Typhimurium (S. typhimurium)-challenged young pigeons. A total of 72 healthy White King pigeons (25 days old) with similar weight were randomly assigned to 3 treatments with six replicate cages. The 3 treatments were unchallenged, S. typhimurium-challenged, and S. typhimurium-challenged orally supplemented with 1 mg zinc per bird. Salmonella infection decreased (P < 0.05) the body weight, the bursa index, the serum IgA content, and the villus height/crypt depth ratio in the ileum, but increased the neutrophil proportion (P < 0.001) and the mRNA expressions of IL-1ß and IL-8 in the jejunum (P < 0.05). Orally supplemental zinc reduced (P = 0.007) the bacterial load in the liver and improved (P < 0.05) the body weight, the bursa index, the serum IgA content, the villus height/crypt depth ratio, and the NOD-like receptor family pyrin domain containing 3 (NLRP3) protein expression, as well as tended to increase (P = 0.064) the protein abundance of caspase-1 of the jejunum, but did not alleviate the high level of neutrophil proportion and IL-1ß mRNA expression of the jejunum (P > 0.05). The results indicated that oral zinc supplementation improved the intestinal mucosal morphology and enhanced the immune response, as well as activated caspase-1-dependent cell pyroptosis pathways in the jejunal epithelium, thereby restricting Salmonella invasion of the challenged young pigeons.


Assuntos
Salmonelose Animal , Salmonella typhimurium , Zinco , Animais , Peso Corporal , Caspases , Columbidae/genética , Columbidae/metabolismo , Imunidade , Imunoglobulina A , Interleucina-8/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/genética , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Sorogrupo , Zinco/farmacologia
16.
Microbiol Spectr ; 10(1): e0185021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044217

RESUMO

The presence of Salmonella in poultry litter, when used as a biological soil amendment, presents a risk for the preharvest contamination of fresh produce. Poultry litter is rich in organic nitrogen, and previous studies have suggested that ammonia (NH3) in poultry litter may affect the survival of Salmonella. Salmonella enterica serovar Typhimurium was inoculated into buffer solutions to characterize the pH dependency, minimum antimicrobial concentration, and efficacy of NH3 production. In solutions with 0.4 M total ammonia nitrogen (TAN) at various pH levels (5, 7, 8, and 9), significant inactivation of Salmonella only occurred at pH 9. Salmonella was reduced by ∼8 log CFU/mL within 12 to 18 h at 0.09, 0.18, 0.26, and 0.35 M NH3. The minimum antimicrobial concentration tested was 0.04 M NH3, resulting in an ∼7 log CFU/mL reduction after 24 h. Solutions with urea (1% and 2%) and urease enzymes rapidly produced NH3, which significantly reduced Salmonella within 12 h. The urease-producing bacterium Corynebacterium urealyticum showed no antagonistic effects against Salmonella in solution. Conversely, with 1% urea added, C. urealyticum rapidly produced NH3 in solution and significantly reduced Salmonella within 12 h. Salmonella inactivation data were nonlinear and fitted to Weibull models (Weibull, Weibull with tailing effects, and double Weibull) to describe their inactivation kinetics. These results suggest that high NH3 levels in poultry litter may reduce the risk of contamination in this biological soil amendment. This study will guide future research on the influence of ammonia on the survival and persistence of Salmonella in poultry litter. IMPORTANCE Poultry litter is a widely used biological soil amendment in the production of fresh produce. However, poultry litter may contain human pathogens, such as Salmonella, which introduces the risk of preharvest produce contamination in agricultural fields. Ammonia in poultry litter, produced through bacterial degradation of urea, may be detrimental to the survival of Salmonella; however, these effects are not fully understood. This study utilized aqueous buffer solutions to demonstrate that the antimicrobial efficacy of ammonia against Salmonella is dependent on alkaline pH levels, where increasing concentrations of ammonia led to more rapid inactivation. Inactivation was also demonstrated in the presence of urea and urease or urease-producing Corynebacterium urealyticum. These findings suggest that high levels of ammonia in poultry litter may reduce the risk of contamination in biological soil amendments and will guide further studies on the survival and persistence of Salmonella in poultry litter.


Assuntos
Amônia/farmacologia , Anti-Infecciosos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo , Urease/metabolismo , Amônia/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Galinhas , Humanos , Concentração de Íons de Hidrogênio , Nitrogênio , Aves Domésticas , Solo
17.
Infect Immun ; 90(1): e0047921, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662213

RESUMO

A variety of eubacteria, plants, and protozoa can modify membrane lipids by cyclopropanation, which is reported to modulate membrane permeability and fluidity. The ability to cyclopropanate membrane lipids has been associated with resistance to oxidative stress in Mycobacterium tuberculosis, organic solvent stress in Escherichia coli, and acid stress in E. coli and Salmonella. In bacteria, the cfa gene encoding cyclopropane fatty acid (CFA) synthase is induced during the stationary phase of growth. In the present study, we constructed a cfa mutant of Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium) and determined the contribution of CFA-modified lipids to stress resistance and virulence in mice. Cyclopropane fatty acid content was quantified in wild-type and cfa mutant S. Typhimurium. CFA levels in the cfa mutant were greatly reduced compared to CFA levels in the wild type, indicating that CFA synthase is the major enzyme responsible for cyclopropane modification of lipids in Salmonella. S. Typhimurium cfa mutants were more sensitive to extreme acid pH, the protonophore CCCP, and hydrogen peroxide compared to the wild type. In addition, cfa mutants exhibited reduced viability in murine macrophages and could be rescued by the addition of the NADPH phagocyte oxidase inhibitor diphenyleneiodonium (DPI) chloride. S. Typhimurium lacking cfa was also attenuated for virulence in mice. These observations indicate that CFA modification of lipids makes an important contribution to Salmonella virulence.


Assuntos
Ciclopropanos/metabolismo , Ácidos Graxos/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Ciclopropanos/química , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/imunologia , Mutação , Estresse Oxidativo , Infecções por Salmonella/imunologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/efeitos dos fármacos , Virulência
18.
Environ Microbiol ; 24(6): 2747-2758, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34528343

RESUMO

The in vitro antibacterial efficacy of an in-house designed cell-penetrating peptide (CPP) variant of Cecropin A (1-7)-Melittin (CAMA) (CAMA-CPP) against the characterized multi-drug resistant (MDR) field strains of Salmonella Enteritidis and Salmonella Typhimurium were evaluated and compared with two identified CPPs namely, P7 and APP, keeping CAMA as control. Initially, the minimum inhibitory concentration (MIC) (µg ml-1 ) of in-house designed CAMA-CPP, APP and CAMA was determined to be 3.91, whereas that of P7 was 7.81; however, the minimum bactericidal concentration (MBC) of all the peptides were twice the MIC. CAMA-CPP and CAMA were found to be stable under different conditions (high-end temperatures, proteinase-K, cationic salts, pH and serum) when compared to the other CPPs. Moreover, CAMA-CPP exhibited negligible cytotoxicity in HEp-2 and RAW 264.7 cell lines as well as haemolysis in the sheep and human erythrocytes with no adverse effects against the commensal gut lactobacilli. In vitro time-kill assay revealed that the MBC levels of CAMA-CPP and APP could eliminate the intracellular MDR-Salmonella infections from mammalian cell lines; however, CAMA and P7 peptides were ineffective. CAMA-CPP appears to be a promising antimicrobial candidate and opens up further avenues for its in vivo clinical translation.


Assuntos
Antibacterianos , Peptídeos Penetradores de Células , Farmacorresistência Bacteriana Múltipla , Salmonella enteritidis , Salmonella typhimurium , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Salmonella enteritidis/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Ovinos
19.
J Ethnopharmacol ; 282: 114589, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492321

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY: The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS: Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS: Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION: The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.


Assuntos
Furanos/farmacologia , Lignanas/farmacologia , Infecções por Salmonella/tratamento farmacológico , Salmonella typhimurium , Zingiber officinale , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Índia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/farmacologia , Plantas Medicinais , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Sorogrupo
20.
Folia Microbiol (Praha) ; 67(1): 1-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401996

RESUMO

Bromelia karatas L. is a plant species from the Americas. The presence of proteases in fruits of B. karatas has been reported but scarcely studied in detail. Proteolytic enzymes from Ananas comosus have displayed antifungal and antibacterial activity. Thus, novel proteases present in B. karatas may be useful as a source of compounds against microorganisms in medicine and food production. In this work, the protein extract from the fruits of B. karatas was characterized and its antibacterial activity against Salmonella Typhimurium and Listeria monocytogenes was determined for the first time. Proteins highly similar to ananain and the fruit bromelain from A. comosus were identified as the main proteases in B. karatas fruits using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The soluble protein extract (SPE) at a concentration of 2.0 mg/mL displayed up to 80% of antibacterial activity against S. Typhimurium. Complete inhibition of L. monocytogenes was reached with up to 1.65 mg/mL of SPE. Plant protease extract containing ananain-like enzyme inhibited up to 90% against S. Typhimurium and up to 85% against L. monocytogenes using only 10 µg/mL of the partial-purified enzyme.


Assuntos
Antibacterianos , Bromelia , Cisteína Proteases , Listeria monocytogenes , Extratos Vegetais/farmacologia , Salmonella typhimurium , Antibacterianos/farmacologia , Bromelaínas , Bromelia/química , Cromatografia Líquida , Cisteína Endopeptidases , Listeria monocytogenes/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA